- Title
- Microcapsules fabricated from liquid marbles stabilized with latex particles
- Creator
- Ueno, Kazuyuki; Hamasaki, Sho; Wanless, Erica J.; Nakamura, Yoshinobu; Fujii, Syuji
- Relation
- Langmuir Vol. 30, Issue 11, p. 3051-3059
- Publisher Link
- http://dx.doi.org/10.1021/la5003435
- Publisher
- American Chemical Society
- Resource Type
- journal article
- Date
- 2014
- Description
- Millimeter- and centimeter-sized "liquid marbles" were readily prepared by rolling water droplets on a powder bed of dried submicrometer-sized polystyrene latex particles carrying poly[2-(diethylamino)ethyl methacrylate] hairs (PDEA-PS). Scanning electron microscopy studies indicated that flocs of the PDEA-PS particles were adsorbed at the surface of these water droplets, leading to stable spherical liquid marbles. The liquid marbles were deformed as a result of water evaporation to adopt a deflated spherical geometry, and the rate of water evaporation decreased with increasing atmospheric relative humidity. Conversely, liquid marbles formed using saturated aqueous LiCl solution led to atmospheric water absorption by the liquid marbles and a consequent mass increase. The liquid marbles can be transformed into polymeric capsules containing water by exposure to solvent vapor: the PDEA-PS particles were plasticized with the solvent vapor to form a polymer film at the air-water interface of the liquid marbles. The polymeric capsules with aqueous volumes of 250 μL or less kept their oblate ellipsoid/near spherical shape even after complete water evaporation, which confirmed that a rigid polymeric capsule was successfully formed. Both the rate of water evaporation from the pure water liquid marbles and the rate of water adsorption into the aqueous LiCl liquid marbles were reduced with an increase of solvent vapor treatment time. This suggests that the number and size of pores within the polymer particles/flocs on the liquid marble surface decreased due to film formation during exposure to organic solvent vapor. In addition, organic-inorganic composite capsules and colloidal crystal capsules were fabricated from liquid marbles containing aqueous SiO₂ dispersions.
- Subject
- liquid marbles; latex particles; microcapsules; water evaporation
- Identifier
- http://hdl.handle.net/1959.13/1306051
- Identifier
- uon:21143
- Identifier
- ISSN:0743-7463
- Language
- eng
- Reviewed
- Hits: 2681
- Visitors: 2919
- Downloads: 0
Thumbnail | File | Description | Size | Format |
---|